Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(10): 1303-1312.e3, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37506701

RESUMO

Transcription factor NF-κB potently activates anti-apoptotic genes, and its inactivation significantly reduces tumor cell survival following genotoxic stresses. We identified two structurally distinct lead compounds that selectively inhibit NF-κB activation by DNA double-strand breaks, but not by other stimuli, such as TNFα. Our compounds do not directly inhibit previously identified regulators of this pathway, most critically including IκB kinase (IKK), but inhibit signal transmission in-between ATM, PARP1, and IKKγ. Deconvolution strategies, including derivatization and in vitro testing in multi-kinase panels, yielded shared targets, cdc-like kinase (CLK) 2 and 4, as essential regulators of DNA damage-induced IKK and NF-κB activity. Both leads sensitize to DNA damaging agents by increasing p53-induced apoptosis, thereby reducing cancer cell viability. We propose that our lead compounds and derivatives can be used in context of genotoxic therapy-induced or ongoing DNA damage to increase tumor cell apoptosis, which may be beneficial in cancer treatment.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , DNA
2.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751748

RESUMO

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Assuntos
Células Caliciformes/citologia , Intestino Delgado/citologia , NF-kappa B/metabolismo , Celulas de Paneth/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Células Caliciformes/metabolismo , Homeostase , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , NF-kappa B/genética , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Celulas de Paneth/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
3.
Protein Cell ; 9(2): 216-237, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28748451

RESUMO

The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Mol Metab ; 7: 119-131, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129613

RESUMO

OBJECTIVE: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s) suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. METHODS: We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. RESULTS: We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. CONCLUSIONS: Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s.


Assuntos
Gluconeogênese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína Forkhead Box O1/metabolismo , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ligação Proteica , Proteína 1 de Ligação a X-Box/genética
5.
Cell ; 167(4): 1052-1066.e18, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814504

RESUMO

It is widely believed that inflammation associated with obesity has an important role in the development of type 2 diabetes. IκB kinase beta (IKKß) is a crucial kinase that responds to inflammatory stimuli such as tumor necrosis factor α (TNF-α) by initiating a variety of intracellular signaling cascades and is considered to be a key element in the inflammation-mediated development of insulin resistance. We show here, contrary to expectation, that IKKß-mediated inflammation is a positive regulator of hepatic glucose homeostasis. IKKß phosphorylates the spliced form of X-Box Binding Protein 1 (XBP1s) and increases the activity of XBP1s. We have used three experimental approaches to enhance the IKKß activity in the liver of obese mice and observed increased XBP1s activity, reduced ER stress, and a significant improvement in insulin sensitivity and consequently in glucose homeostasis. Our results reveal a beneficial role of IKKß-mediated hepatic inflammation in glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular Tumoral , Homeostase , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fosforilação , Estabilidade Proteica
6.
Am J Pathol ; 186(11): 2803-2812, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27751443

RESUMO

The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.


Assuntos
Linfedema/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-2/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Vasos Sanguíneos/fisiopatologia , Permeabilidade Capilar , Feminino , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Neuropilina-2/genética , Neuropilina-2/metabolismo , Organismos Livres de Patógenos Específicos , Fator A de Crescimento do Endotélio Vascular/genética
7.
Nat Med ; 22(9): 1023-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479085

RESUMO

The increasing global prevalence of obesity and its associated disorders points to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and thus promote weight loss, we analyzed a library of small molecules that have mRNA expression profiles similar to that of celastrol, a naturally occurring compound that we previously identified as a leptin sensitizer. Through this process, we identified another naturally occurring compound, withaferin A, that also acts as a leptin sensitizer. We found that withaferin-A treatment of mice with diet-induced obesity (DIO) resulted in a 20-25% reduction of body weight, while also decreasing obesity-associated abnormalities, including hepatic steatosis. Withaferin-A treatment marginally affected the body weight of ob/ob and db/db mice, both of which are deficient in leptin signaling. In addition, withaferin A, unlike celastrol, has beneficial effects on glucose metabolism that occur independently of its leptin-sensitizing effect. Our results show that the metabolic abnormalities of DIO can be mitigated by sensitizing animals to endogenous leptin, and they indicate that withaferin A is a potential leptin sensitizer with additional antidiabetic actions.


Assuntos
Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Leptina/metabolismo , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Vitanolídeos/farmacologia , Animais , Glicemia/metabolismo , Western Blotting , Fígado Gorduroso/patologia , Imunofluorescência , Teste de Tolerância a Glucose , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Triterpenos Pentacíclicos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Triterpenos/farmacologia
8.
Arch Environ Occup Health ; 71(5): 293-299, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26394928

RESUMO

The objectives of this study were to assess the nutritional status, daily energy intake, and daily energy expenditure of coal miners in Turkey. A total of 135 healthy coal miners (aged 19-64 years) were evaluated. Heart rates were measured using Polar watches, and the total energy expenditure was calculated using physical activity level formula and Hiilloskorpi equation. The average body mass index of the participants was 25.7 ± 3.98 kg/m2, and the average energy intake was 3,973.7 ± 420.85 kcal. According to Dietary Reference Intakes, the energy and nutrient intakes of the miners were adequate, except for the intake of vitamin D. The coal miners were found to be at moderate (43.0%), heavy (41.5%), and very heavy (13.3%) activity levels. Calculations of the energy expenditure at work were found to be 2,189.8 ± 376.19 to 2,788.8 ± 359.89 kcal per day. Further studies have to be conducted for developing national standards for each occupation.


Assuntos
Ingestão de Energia , Metabolismo Energético , Mineradores , Estado Nutricional , Saúde Ocupacional , Adulto , Carvão Mineral , Estudos Transversais , Humanos , Masculino , Pessoa de Meia-Idade , Mineradores/estatística & dados numéricos , Turquia , Adulto Jovem
9.
Microvasc Res ; 96: 68-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25087623

RESUMO

Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.


Assuntos
Linfangiogênese/fisiologia , Metástase Neoplásica/fisiopatologia , Neuropilinas/fisiologia , Semaforina-3A/fisiologia , Animais , Humanos , Metástase Linfática , Sistema Linfático/patologia , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Neoplasias/irrigação sanguínea , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...